

\begin{tabular}{|c|c|c|c|}
\hline 3 \& $$
\begin{aligned}
& \omega=2 x-1 \Rightarrow x=\frac{\omega+1}{2} \\
& \left(\frac{\omega+1}{2}\right)^{3}-4\left(\frac{\omega+1}{2}\right)^{2}+8\left(\frac{\omega+1}{2}\right)+3=0 \\
& \Rightarrow \frac{1}{8}\left(\omega^{3}+3 \omega^{2}+3 \omega+1\right)-\left(\omega^{2}+2 \omega+1\right) \\
& +4(\omega+1)+3=0 \\
& \Rightarrow \omega^{3}-5 \omega^{2}+19 \omega+49=0
\end{aligned}
$$ \& M1
A1
M1
M1

A2
A1

[7] \& | Using a substitution Correct |
| :--- |
| Substitute into cubic |
| Attempting to expand cubic and quadratic |
| LHS oe, -1 each error |
| Correct equation | \\

\hline 3 \& | OR $\begin{aligned} & \alpha+\beta+\gamma=4 \\ & \alpha \beta+\alpha \gamma+\beta \gamma=8 \\ & \alpha \beta \gamma=-3 \end{aligned}$ |
| :--- |
| Let new roots be k, l, m then $\begin{aligned} & k+l+m=2(\alpha+\beta+\gamma)-3=5=\frac{-B}{A} \\ & k l+k m+l m=4(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & -4(\alpha+\beta+\gamma)+3=19=\frac{C}{A} \\ & k l m=8 \alpha \beta \gamma-4(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & +2(\alpha+\beta+\gamma)-1=-49=\frac{-D}{A} \\ & \Rightarrow \omega^{3}-5 \omega^{2}+19 \omega+49=0 \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 |
| A1 |
| A1 |
| [7] | \& | Attempt to find $\Sigma \alpha \Sigma \alpha \beta \alpha \beta \gamma$ |
| :--- |
| All correct |
| Attempt to use root relationships to find at least two of $\Sigma k \Sigma k l \mathrm{klm}$ |
| Quadratic coefficient |
| Linear coefficient |
| Constant term |
| Correct equation | \\

\hline
\end{tabular}

4		B1 B1 B1 B1 B1 B1 [6]	Circle Centre 3 + 2j Radius $=2$ or 3 , consistent with their centre Both circles correct cao Correct boundaries indicated, inner excluded, outer included (f t concentric circles) Region between concentric circles indicated as solution SC - 1 if axes incorrect
5	$\begin{aligned} & \sum_{r=1}^{n} r^{2}(3-4 r)=3 \sum_{r=1}^{n} r^{2}-4 \sum_{r=1}^{n} r^{3} \\ & =\frac{3}{6} n(n+1)(2 n+1)-\frac{4}{4} n^{2}(n+1)^{2} \\ & =\frac{1}{2} n(n+1)[(2 n+1)-2 n(n+1)] \\ & =\frac{1}{2} n(n+1)\left(1-2 n^{2}\right) \end{aligned}$	M1 M1 A1 M1 A1 [5]	Separate into two sums involving r^{2} and r^{3}, may be implied Appropriate use of at least one standard result Both terms correct Attempt to factorise using both n and $n+1$ Complete, convincing argument

6	When $n=1,2^{1+1}+1=5$, so true for $n=1$	B1	
	Assume $u_{k}=2^{k+1}+1$	E1	Assuming true for k
	$\Rightarrow u_{k+1}=2^{k+1}+1+2^{k+1}$	M1	Using this u_{k} to find u_{k+1}
	$=2 \times 2^{k+1}+1$		Using this u_{k} to find u_{k+1}
	$=2^{k+2}+1$	A1	Correct simplification
	$=2^{(k+1)+1}+1$		
	But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is also true for $k+1$.	E1	Dependent on A1 and previous E1
	Since it is true for $n=1$, it is true for all positive integers.	E1 [6]	Dependent on B1 and previous E1

8(i)	$\delta=1-\mathrm{j}$	B1	
8(ii)	There must be a second real root because complex roots occur in conjugate pairs.	E1 [2]	
	$\alpha+\beta+\gamma+\delta=1$	B1	
	$\begin{aligned} & \alpha+\beta+\gamma+\delta=1 \Rightarrow 1+(1+j)+\gamma+(1-j)=1 \\ & \Rightarrow \gamma=-2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ [3]	cao
8(iii)	$(z-1)(z+2)(z-(1+j))(z-(1-j))$	B1	Correct factors from their roots
	$\begin{aligned} & =\left(z^{2}+z-2\right)\left(z^{2}-2 z+2\right) \\ & =z^{4}-2 z^{3}+2 z^{2}+z^{3}-2 z^{2}+2 z-2 z^{2}+4 z-4 \\ & =z^{4}-z^{3}-2 z^{2}+6 z-4 \end{aligned}$	M1	Attempt to expand using all 4 factors One for each of a, b and c
	$\Rightarrow a=-2, b=6, c=-4$	A3	
	OR		
	$\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=a=-2$	M2	Use of root relationships attempted, M2 evidence of all 3, M1 for evidence of 2 OR substitution to get three equations and solving
		A1	$a=-2$ cao
	$\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=-b=-6 \Rightarrow b=6$	A1	$b=6 \text { cao }$
	$\alpha \beta \gamma \delta=c=-4$	$\begin{aligned} & \mathrm{B} 1 \\ & {[5]} \end{aligned}$	$c=-4\left(\right.$ SC ft on their $2^{\text {nd }}$ real root $)$
8(iv)	$f(-z)=z^{4}+z^{3}-2 z^{2}-6 z-4$	B1	ft on their a, b, c, simplified
	Roots of $f(-z)=0$ are $-1,2,-1+j$ and $-1-j$	B1 [2]	For all four roots, cao

